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Example: Predicting Success 
of UPR Students

Data: information from application forms of 
25495 students who were accepted to UPR 
between 2003 and 2013, together with their 
GPA after their freshman year and information 
on whether they graduated (defined as 
graduated in 150% of official time, for example 6 
years for a 4 year program)



Example record:

Student.Id
Año.de.Ad
mision Genero

Esc.Sup.Co
digo

Esc.Sup.No
mbre

Esc.Sup.Tip
o

Esc.Sup.Lu
gar

Codigo.Pro
g.Admision

Prog.de.Ad
mision

GPA.Escuel
a.Superior

GPA.al.Pri
mer.Ano

00C2B4EF77 2005 M 1010
Jose E. 
Lugo Pública ADJUNTAS 502

Ingeniería 
Eléctrica -
BC 3.97 3.67

Aptitud.Ve
rbal

Aptitud.Ma
tem

Aprov.Ingl
es

Aprov.Mat
em

Aprov.Espa
nol IGS Grad al.100 al.150

Ano.Gradu
acion

Codigo_Prog_Gradua
cion

647 621 626 672 551 342 Si No Si 2012 502

Prog_Gra
duacion

GPA.de.G
raduacion

Niv.Educ.
del.Padre

Niv.Educ.
de.la.Mad
re

Niv_Avan
zado_Esp
a

Niv_Avan
zado_Ingl
es

Niv_Avan
zado_Mat
e_I

Niv_Avan
zado_Mat
e_II

Destrezas
1

Destrezas
2 Regresó.al.Siguiente.Año

Ingeniería 
Eléctrica 3.33

4 : 
Completó 
Escuela 
Superior

7 : 
Bachillera
to 3 3 3 Si



How well is the current 
admissions system working?

Admissions is based on 
IGS score (a combination 
of GPA, AptVerb and 
AptMate)

How well does it predict 
the GPA after the 
freshman year?

cor(IGS,FGPA) = 0.43

(𝑝 < 10−10)





Least Squares Regression

Model: 𝑦 = 𝛽0+𝛽1𝑥

Fitted values:  𝑦𝑖 = 𝛽0+𝛽1𝑥𝑖

Residuals: ϵ𝑖 = 𝑦𝑖 −  𝑦𝑖

Method of Least Squares:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑅𝑆𝑆 = (𝑦𝑖− 𝑦𝑖)
2



Standard Output of 
StatProgram (here R)

Coefficients:

Estimate     Std. Error      t value      Pr(>|t|)

(Intercept) -0.674            0.0447         -15.10       <2e-16

IGS               0.011            0.0001           7647       <2e-16

Residual standard error: 0.7032 on 25493 degrees of 
freedom

Multiple R-squared:  0.1866

F-statistic:  5847 on 1 and 25493 DF,  p-value: < 2.2e-16



What does it mean?

Coefficients:

Estimate     Std. Error      t value      Pr(>|t|)

(Intercept) -0.674            0.0447         -15.10       <2e-16

IGS               0.011 0.0001           7647       <2e-16

Equation: FGPA= −0.679 + 0.011𝐼𝐺𝑆



Estimate     Std. Error      t value      Pr(>|t|)
(Intercept) -0.674            0.0447         -15.10       <2e-16

(Intercept) Pr(>|t|) <2e-16

Hypothesis Test: 𝐻0: 𝛽0 = 0 𝑣𝑠. 𝐻𝑎: 𝛽0 ≠ 0

→ Intercept 𝛽0 is not 0 (but who cares?)

In general decision on whether or not to fit an intercept is best made 
by considering the Science:

Example
x = #of hurricanes per year
y = $ total damages per year
If x=0, then y=0 



Estimate     Std. Error      t value      Pr(>|t|)

IGS               0.011277   0.000115         98.09       <2e-16

Hypothesis Test: 𝐻0: 𝛽1 = 0 𝑣𝑠. 𝐻𝑎: 𝛽1 ≠ 0

IGS: Pr(>|t|) <2e-16

→ coef 𝛽1 of IGS is not 0 (but that was obvious from 
graph, and  from Pearson’s correlation coefficient. 
(Actually, in the case of a single predictor those two 
tests are the same) 

→ generally neither of these tests is very interesting 
or useful.



Residual standard error: 0.7032 on 25493 degrees of freedom
(Pretty meaningless)

Multiple R-squared:  0.1866

𝑅2 = 18.7% of the variation in the FGPA is explained by the IGS. Not 
very high, maybe we should try to do better

Whether an 𝑅2 is “high” or “low” depends on the circumstances. 

Note: 𝑐𝑜𝑟(𝐼𝐺𝑆, 𝐹𝐺𝑃𝐴)2 ∗ 100% = 0.432 ∗ 100%=18.7%

F-statistic:  5847 on 1 and 25493 DF,  p-value: < 2.2e-16
p-value small → IGS is not completely useless for predicting FGPA, but 
again, the correlation test already told us that.

• In a simple regression the only really interesting part of the output 
is the equation, and to a lesser degree the 𝑅2



Assumptions of LSR

1) Linear Model is ok (and not say quadratic or 
some other shape)

2) 𝜖𝑖~𝑁(0, 𝜎)

2a) 𝜖𝑖~𝑁 Residuals come from a Normal 
distribution

2b) 𝜖𝑖~𝑁 0, 𝜎 Residuals have equal variance 
(independent of x) (homoscatasticity)



Is linear model ok? Residual vs Fits 



Nice version of this:



Normal Residuals? Normal Plot



Equal Variance? Residual vs Fits again



If there are problems

Transformations (√, log etc)
Polynomial regression

𝑦 = 𝛼0 + 𝛼1x+𝛼2𝑥
2+…

Interesting question: when to stop fitting?
George Box (1976) “All models are wrong but some 
are useful”
Occam’s Razor: “Keep it as simple as possible” (my 
version)
Models should be parsimoneous



Other things one can do…

• Formal tests (say for normality)

• Find influential observations (Cook’s distance, 
leverage, etc.

• Calculate other residuals (standardized, 
studentized …)



Use of Dummy Variables

Let’s say we want to include Gender as a 
predictor 



To do a regression code gender 

(0=Male, 1=Female), then
Estimate 

(Intercept)      -0.857  

IGS                    0.010  

Gender            0.231

Now

Male FGPA = -0.857+0.01 IGS +0.231*0

= -0.857+0.01 IGS

Female FGPA = -0.857+0.01 IGS +0.231*1

= -0.626+0.01 IGS

ALWAYS fits parallel lines!



In order to get most general model we have to 
include a product term:

Estimate   Std. Error   t value  Pr(>|t|)
(Intercept)    -0.998      0.061      -16.209  < 2e-16
IGS                  0.011     0.0001       59.215  < 2e-16
Gender          0.522      0.088         5.915  3.36e-09
IGS:Gender -0.001     0.001        -3.314   0.00092

Male FGPA = -0.998 + 0.011 IGS + 0.522*0 – 0.001*IGS*0 
= -0.998 + 0.011 IGS

Female FGPA = -0.998 + 0.011 IGS + 0.522*1 – 0.001*IGS*1=
= -0.476 + 0.010 IGS



Categorical Predictor 
with more than two values

Say we had info on parents: married, divorced, 
never married.
Could include this as follows: code 
married=0, divorced=1, never married=2
But is this the same as never married=0, married=1, 
divorced=2?
Introduced order and “size” (1-0=2-1)
Usually better: Dummy variables:
Married=1 if yes, 0 if not
Divorced=1 if yes, 0 if not



How about including more Predictors?
→Multiple Regression

There is more information on the application 
form

Some of it is not useful for legal and ethical 
reasons (Gender, Educational level of parents)

One big problem: High School GPA! In some 
schools a GPA of 3.5 means a high performing 
student, in others not so much

Solution: School GPA  



School GPA

• Find mean GPA after Freshman year at UPRM for all 
students from the same high school

• Find the mean GPA of those students at that high school.
• Take the ratio
• A high number means students from this school tend to do 

well at UPR.
The extreme cases:
• The worst: School “3943” Freshman GPA 1.3, School GPA 

3.8, Ratio 0.34
• The best School “2973” Freshman GPA 2.98, School GPA 

3.2, Ratio 0.93





Correlations of FGPA vs Predictors
Predictor Correlation P-value

SchoolGPA 0.206 0.00

GPA.Escuela.Superior 0.436 0.00

Aptitud.Verbal 0.257 0.00

Aptitud.Matem 0.202 0.00

Aprov.Ingles 0.204 0.00

Aprov.Matem 0.248 0.00

Aprov.Espanol 0.292 0.00

Niv_Avanzado_Espa 0.264 0.00

Niv_Avanzado_Ingles 0.225 0.00

Niv_Avanzado_Mate_I 0.054 0.00

Niv_Avanzado_Mate_II 0.214 0.00



New Issue: 
Correlations between Predictors

SchoolGPA
GPA.Escuela
.Superior

Aptitud.Ver
bal

Aptitud.Mat
em

Aprov.Ingle
s

Aprov.Mate
m

Aprov.Espa
nol

Niv_Avanza
do_Espa

Niv_Avanza
do_Ingles

Niv_Avanza
do_Mate_I Niv_Avanzado_Mate_II

SchoolGPA 1 -0.22 0.205 0.247 0.325 0.25 0.197 0.15 0.239 0.002 0.088

GPA.Escuela
.Superior -0.22 1 0.18 0.159 0.052 0.218 0.25 0.304 0.196 0.086 0.248

Aptitud.Ver
bal 0.205 0.18 1 0.463 0.512 0.474 0.603 0.368 0.358 0.08 0.225

Aptitud.Mat
em 0.247 0.159 0.463 1 0.455 0.815 0.388 0.326 0.366 0.148 0.383

Aprov.Ingle
s 0.325 0.052 0.512 0.455 1 0.48 0.429 0.28 0.497 0.088 0.187

Aprov.Mate
m 0.25 0.218 0.474 0.815 0.48 1 0.403 0.354 0.381 0.161 0.412

Aprov.Espa
nol 0.197 0.25 0.603 0.388 0.429 0.403 1 0.355 0.321 0.07 0.213

Niv_Avanza
do_Espa 0.15 0.304 0.368 0.326 0.28 0.354 0.355 1 0.666 0.202 0.466

Niv_Avanza
do_Ingles 0.239 0.196 0.358 0.366 0.497 0.381 0.321 0.666 1 0.226 0.429

Niv_Avanza
do_Mate_I 0.002 0.086 0.08 0.148 0.088 0.161 0.07 0.202 0.226 1 0.096

Niv_Avanza
do_Mate_II 0.088 0.248 0.225 0.383 0.187 0.412 0.213 0.466 0.429 0.096 1



High correlations can cause problems → Multi-collinearity

Issues with fitting (numerical instability)
Extreme case cor(x1,x2) ± 1 → regression not possible (but easily 
resolved)

Issues with interpretation – regression coefficients can be negative 
even though all predictors have positive correlation with response 

Sometimes worthwhile to transform predictors to orthogonal variables 
(principle components)

Minor issue, usually ignored: if a predictor is a dummy variable, it is 
categorical, Pearson’s correlation coefficient meant for quantitative 
variables



Output of Regression:

Residual standard error: 0.6506 on 25483 degrees of freedom

Multiple R-squared:  0.3041

F-statistic: 1012 on 11 and 25483 DF,  p-value: < 2.2e-16

Estimate Std. Error t value p value

(Intercept) 2.724 0 668 0

SchoolGPA 0.209 0 45.6 0

GPA.Escuela.Superior 0.351 0 75.6 0

Aptitud.Verbal 0.041 0.01 7.32 2.49E-13

Aptitud.Matem -0.036 0.01 -5.06 4.10E-07

Aprov.Ingles 0.028 0.01 5.089 3.62E-07

Aprov.Matem 0.021 0.01 2.829 0.004664

Aprov.Espanol 0.056 0.01 10.52 7.47E-26

Niv_Avanzado_Espa 0.021 0.01 3.620 0.000294

Niv_Avanzado_Ingles -0.014 0.01 -2.39 0.016847

Niv_Avanzado_Mate_I -0.0005 0 -0.1 0.902422

Niv_Avanzado_Mate_II 0.035 0 7.202 6.06E-13



Model Checking, same as before

Doesn’t look very good

But: remember the data:
0 ≤ 𝐹𝐺𝑃𝐴 ≤ 4

Is it good enough? Not an 
easy question to answer.



A new question: do we need all the 
predictors? → Model Selection

Idea 1: use cor(Predictor, Response), if test fails 
to reject 𝐻0: no correlation drop predictor

Bad idea, ignores correlations between 
predictors

Idea 2: use t-tests

Bad idea, again because it ignores correlations 
between predictors

Bad idea, but done a lot!



Idea 3: use some measure that combines goodness-
of-fit and complexity of the model (usually just the 
number of terms), calculate for all possible models, 
pick best (“Best Subset Regression”)

Choice of measure: 

adj 𝑅2 , Mallow’s 𝐶𝑝, PRESS (predicted residual sum 
of squares)…

In our data all of them suggest to use all predictors 
except Niv_Avanzado_Mate_I.



If there are many predictors

A good computer with a good software can handle up to 
30 (or so) predictors

If many more, we need other search strategy:

Backward Selection: start with full model, find predictor 
that can be removed without changing fit (by much), if 
there is one remove it and continue, otherwise stop.

Forward selection: the other way around

Stepwise regression: allows in each step to either remove 
or add a variable.

Careful: neither of these necessarily finds best model



How about predicting success directly?

Use “graduated on 
time” as response 
(coded as 0=No or 
1=Yes

Only students 
admitted before 
2008 (who should 
have graduated by 
now)

Y axis is jittered to 
make data visible



Can we do a regression again, trying to predict whether or not a 
student will graduate?

But response variable is binary

Biggest issue: predicted values are quantitative, response is 
categorical.

Immediate consequence: can no longer consider

𝑅𝑆𝑆 = (𝑦𝑖− 𝑦𝑖)
2

Least squares won’t work

Fitting usually done by maximum likelihood
(which is the same as least squares in regular regression)



Link functions
Solution: As in least squares regression we want to 
find an equation that predicts the mean response 
𝐸 𝑌 for a given set of values of the predictors.

Now 𝑌~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝), so 𝐸 𝑌 = 𝑝

Use a transformation 𝑔: [0,1] → 𝑅

Logit:        𝑔 𝑝 = log
𝑝

1−𝑝

→ logistic regression



𝑔 𝑦𝑖 = 𝛼0 + 𝛼𝑖𝑥𝑖

log
𝑦𝑖

1 − 𝑦𝑖
= 𝛼0 + 𝛼𝑖𝑥𝑖

 𝑦𝑖 =
exp(𝛼0 +  𝛼𝑖𝑥𝑖)

1 + exp(𝛼0 +  𝛼𝑖𝑥𝑖)

Note: always

0 <  𝑦𝑖 < 1

If you want to allow for  𝑦𝑖 = 0 or  𝑦𝑖 = 1, need to 
use other link function, but for binomial data logit is 
special (canonical link) 



Logit 𝑔 𝑝 = log
𝑝

1−𝑝

Probit 𝑔 𝑝 = Φ−1(𝑝)



Another consequence of the math:

If              𝛼0+ 𝛼𝑖𝑥𝑖 = 0

then         𝑦𝑖 =
exp(0)

1+exp(0)
=

1

2

And another one: in simple regression a one 
unit increase in x results in a β increase in y.

Here not at all clear what happens.



Graduated vs IGS 
with logistic regression fit



Usual Output of GLM command

Coefficients:
Estimate      Std. Error       z value       Pr(>|z|)

(Intercept)          -5.566          0.1789         -31.11        <2e-16
IGS                        0.017          0.0006           30.07         <2e-16

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 21649 on 15765  degrees of freedom
Residual deviance: 20667  on 15764  degrees of freedom
AIC: 20671

Number of Fisher Scoring iterations: 4



Coefficients and  test are the same
GLM has no 𝑅2 (does in general not exist) but has null deviance and residual 
deviance:

Null deviance: 21649 on 15765  degrees of freedom
Residual deviance: 20667  on 15764  degrees of freedom

The null deviance shows how well the response is predicted by the model 
with nothing but an intercept. It is supposed to have a approximate chi-
square distribution, so the p-value of 
𝐻0: 𝑛𝑜 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠 𝑛𝑒𝑒𝑑𝑒𝑑 𝑡𝑜 𝑒𝑥𝑝𝑙𝑎𝑖𝑛 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 would be 

1 − (χ2 > 21649 15765𝑑𝑓 = 0
But this approximation can be very bad, especially if response is binary

The residual deviance shows how well the response is predicted by the model 
when the predictors are included. Again the same problem applies:

1 − (χ2 > 20667 15764 𝑑𝑓 = 0
But again this p value is almost certainly wrong!



• Also no F test, instead “AIC” = Akaike’s
information criterion”

𝐴𝐼𝐶 = −2log(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝑚𝑜𝑑𝑒𝑙) + 2𝑝

• Smaller values indicate better model

• Mostly used for comparing models (even non-
nested ones!)

• Last item concerns method for estimating 
parameters called Fisher’s scoring method (in 
most cases same as Newton-Raphson)



Regression vs GLM

Standard regression is a special case of a general 
linear model with

Link function 𝑔 𝜇 = 𝜇

So for the right data we could fit both methods, 
and …



What if we do standard regression and 
GLM on data were both work?

Standard Regression
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 11.86    1.05849  11.209  < 2e-16
x1           1.03061    0.11033   9.341 3.56e-15
x2           0.79356    0.07128  11.134  < 2e-16

Residual standard error: 1.035 on 97 
degrees of freedom
Multiple R-squared:  0.782,     Adjusted R-
squared:  0.7775 
F-statistic:   174 on 2 and 97 DF,  p-value: < 
2.2e-16

Generalized Linear Model
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 11.86   1.05849  11.209  < 2e-16
x1           1.03061    0.11033   9.341 3.56e-15
x2           0.79356    0.07128  11.134  < 2e-16

(Dispersion parameter for gaussian family 
taken to be 1.071257)

Null deviance: 476.65  on 99  degrees of 
freedom
Residual deviance: 103.91  on 97  degrees of 
freedom
AIC: 295.63



Model Diagnostics

Tricky…



“Perfect Artificial Example”



And its diagnostic plots:



Use all Information



Logistic Regression Info

Predictor
Coefficien
t

(Intercept) -0.239

SchoolGPA 0.491

GPA.Escuela.Superior 0.603

Aptitud.Verbal -0.004

Aptitud.Matem -0.178

Aprov.Ingles -0.096

Aprov.Matem 0.231

Aprov.Espanol 0.028

Niv_Avanzado_Espa 0.117

Niv_Avanzado_Ingles 0.029

Niv_Avanzado_Mate_I -0.006

Niv_Avanzado_Mate_II 0.113

Residual deviance: 19565  on 
15754  degrees of freedom

AIC: 19589



IGS or All Predictors (Full)?

What is better, IGS or the full model?
First answer: check AIC:

AIC(IGS): 20671
AIC(Full): 19589

So this points to full model

But: is full model statistically significantly better than IGS?

Can’t tell, AIC does not have a sampling distribution!



IGS or Full

Another way to compare: what are the 
respective miss-classification rates?

Do the following: 

use both models to predict the probability that a 
student graduates

discretize by assigning “No” if probability is 
<1/2, “Yes” otherwise. 

Find misclassification rates.



Students predicted to fail who succeeded
IGS            Full 
36.2%      32.7% 

Students predicted to succeed who failed
IGS        Other 
41.2%      37.2% 

In both cases Full model has lower error rate



Model selection

Can we simplify Full, by eliminating some 
predictors?

(what follows is output from the R command 
step but similar methods are included in most 
Stat programs)



Start:  AIC=19589.03
Grad ~ SchoolGPA + GPA + Aptitud.Verbal + Aptitud.Matem + Aprov.Ingles + 

Aprov.Matem + Aprov.Espanol + Niv_Avanzado_Espa + Niv_Avanzado_Ingles + 
Niv_Avanzado_Mate_I + Niv_Avanzado_Mate_II

Df Deviance   AIC
- Aptitud.Verbal 1                  19565 19587
- Niv_Avanzado_Mate_I 1                  19565 19587
- Niv_Avanzado_Ingles 1                  19566 19588
- Aprov.Espanol 1                  19567 19589
<none>                                                           19565 19589
- Aprov.Ingles 1                  19582 19604
- Niv_Avanzado_Espa 1                  19588 19610
- Niv_Avanzado_Mate_II 1                  19595 19617
- Aptitud.Matem 1                  19599 19621
- Aprov.Matem 1                  19619 19641
- SchoolGPA 1                  20146 20168
- GPA                                          1                  20431 20453
____________________________________________________________
Model with all predictors has AIC 19589
Model without Aptitud.Verbal has AIC 19587
→ small change, drop Aptitud.Verbal



- Niv_Avanzado_Mate_I 1    19565 19585
- <none>                       19565 19587
______________________
- Niv_Avanzado_Ingles 1    19566 19584
- <none>                       19565 19585
______________________
- Aprov.Espanol 1    19568 19584
<none>                       19566 19584
______________________
<none>                       19568 19584
- Aprov.Ingles          1    19584 19598

STOP



Best Model

log
𝐺𝑟𝑎𝑑

1 − 𝐺𝑟𝑎𝑑
=

- 0.241 SchoolGPA
+ 0.495 GPA 
- 0.174 Aptitud.Matem
- 0.080  Aprov.Ingles
+ 0.231 Aprov.Matem
+ 0.133  Niv_Avanzado_Espa
+ 0.116 Niv_Avanzado_Mate_II



Binomial Response
Let’s consider the following experiment (Collett, 1991) on  the 
toxicity of the tobacco budworm to doses of a pyrethroid to 
which the moths were beginning to show resistance. Batches of 
twenty moths of each gender were exposed for 3 days to the 
pyrethroid, and the number of each batch which were dead or 
knocked down was recorded.

So for each gender-dose combination the number of dead moths 
has a binomial distribution with n=20 and p=Probability of death

dose

Gender 1 2 4 8 16 32
Male 1 4 9 13 18 20
Female 0 2 6 10 12 16



Coefficients:

Estimate     Pr(>|z|)

(Intercept)         -2.99                    0

Gender               0.175          0.822

ldose 0.906                  0

Gender:ldose 0.353          0.191

Careful with t-tests: these test 
whether Gender is significant if 
ldose=0, which is not the case. 
To see whether gender is 
significant at other doses, need 
to re-parametrize (but is obvious 
from graph)



Poisson Regression

Birth by Cesarean are rare 
when compared to normal 
births, but are they more 
common in public than in 
private hospitals? The data set 
has the number of births, 
number of cesarean births and 
the type of hospital. 

Births Hospital Cesarean

236 Private 8

739 Public 16

970 Public 15

2371 Public 23

309 Public 5

679 Public 13

26 Private 4

1272 Public 19

3246 Public 33

1904 Public 19

357 Public 10

1080 Public 16

1027 Public 22

28 Private 2

2507 Public 22

138 Private 2

502 Public 18

1501 Public 21

2750 Public 24

192 Public 9





Each birth is a Bernoulli trial – cesarean or not. 
Births are common but “successes” are rare, so 
the Poisson approximation to the Binomial 
should be good. Therefore it makes sense to 
model the number of cesarean births as

𝑦𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(λ𝑖)

And to relate the parameter λ to the predictors 
via the link function

l𝑜𝑔 λ𝑖 = 𝛼0 + 𝛼𝑖𝑥𝑖



Poisson Regression Output



Diagnostic plots – much nicer





Types of Generalized Linear Models





Thanks!


